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A B S T R A C T

Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few
decades, but relatively little quantitative information is available about the spatial extent of blooms.
Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water
bodies and across geo-political boundaries. An assessment method was developed using MEdium
Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent,
transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to
2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for
each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s
(WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into
three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of
cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a
slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio
(excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite
remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies
within an entire state. The temporal assessment method developed here will be relevant into the future
as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cyanobacterial harmful algal blooms (CyanoHAB) impact lakes
and estuaries. Freshwater cyanoHABs occur worldwide and are
associated with food web alterations, hypoxia (Paerl et al., 2011),
human respiratory and skin irritation during recreational activi-
ties, and taste and odor of potable water as a result of ingestion
(Stewart et al., 2006). Pets, domestic livestock, and wildlife are also
affected by exposure to toxins released during blooms (Backer
et al., 2013). Cyanobacterial harmful algal blooms are thought to be
increasing globally over the past few decades (Paerl and Paul, 2012;
Taranu et al., 2015), but little quantitative information is available
about the spatial extent and trends of blooms.

Assessment methods are needed at local, regional, national, and
global scales to provide relevant information both in regions
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already experiencing cyanoHABs as well as regions not yet
impacted by blooms. Understanding historical trends is important
to inform forecasting efforts and reduce uncertainty estimates
(Clark et al., 2001). It is necessary to understand the ecology and
dynamics of the water body, and to have information on the
presence of cyanoHABs to develop effective water management
strategies. Information on cyanoHAB location will help water
managers to effectively distribute resources to control and manage
them. Scalable assessments may permit the development of
management objectives over different temporal periods and
spatial scales (Suter, 2007). Periodic updates could then be used
to benchmark measures of success.

The temporal assessments for cyanoHABs that do exist typically
focus on single, relatively large water bodies such as the Baltic Sea,
Lake Taihu, Victoria, and Lake Erie (Chen et al., 2003; Duan et al.,
2009; Kahru and Elmgren, 2014; Kahru et al., 2016; Verschuren
et al., 2002). Some time series analyses suggest continued
increases of cyanoHABs, such as in Lake Taihu and Victoria (Duan
et al., 2009; Verschuren et al., 2002). A study examining �200
years of sedimentary evidence combined with decadal-scale
monitoring records revealed that cyanobacteria have increased
Fig. 1. Study area location map indicating all MERIS scene boundaries (A), California (B), O
South West Florida (SWF), and South Florida (SF).
significantly since 1800, and more rapidly since 1945 in north
temperate-subarctic lakes (Taranu et al., 2015). The longest time
series using satellite imagery exists for the Baltic Sea (Kahru and
Elmgren, 2014), connecting cyanoHABs to phosphorus loads
(Kahru et al., 2016). Individual lakes may also see increases in
blooms. Lake Taihu experienced extended spring and summer
blooms from 1987 to 2007 (Duan et al., 2009), and the lake changed
from oligo-mesotrophic, with low algal biomass in 1981, to
hypertrophic with cyanobacteria bloom dominated conditions
until cessation in 1995 after the implementation of a nutrient
reduction program (Chen et al., 2003). In Lake Victoria, a
palaeolimnological study found that phytoplankton production
increased beginning in the 1930s. Diatom blooms eventually gave
way to increased cyanobacteria blooms after 1987 due to
anthropogenic landscape alteration (Verschuren et al., 2002). Lake
Erie has seen a reappearance of blooms from the 1990s into this
century, with more severe blooms in recent years (Stumpf et al.,
2012; Wynne and Stumpf, 2015).

Cyanobacterial harmful algal bloom progression is known to be
affected by weather patterns and other environmental conditions,
natural and anthropogenic (Michalak et al., 2013; Paerl et al., 2011;
hio (C), and Florida with three water management districts (D): St. Johns River (SJR),



146 E.A. Urquhart et al. / Harmful Algae 67 (2017) 144–152
Stumpf et al., 2012). Increased anthropogenic nutrient inputs have
been documented as a major driver of cyanoHABs (Downing et al.,
2001; Paerl and Otten, 2013). Additional drivers known to promote
cyanoHAB growth included changes in the frequency and timing of
extreme weather events (Michalak et al., 2013; Paerl and Huisman,
2009), increased water temperature (Kosten et al., 2012), and
alterations in water residence time (Elliott, 2010). As a result,
studies show variable trends in cyanoHABs. For example, inter-
annual variability has been seen in the Baltic Sea. Kahru and
Elmgren (2014) found decadal-scale oscillations in extent of
cyanobacteria biomass between 1979 and 2013. The Baltic Marine
Environment Protection Commission Helsinki Commission (HEL-
COM) found similar year-to-year variability, while also identifying
areas where biomass decreased between 1990 and 2014 (Was-
mund et al., 2015). Lake Erie cyanobacteria bloom biovolume
varied tremendously after 2002 (Bridgeman et al., 2013; Stumpf
et al., 2016). Trends in cyanoHABs are poorly resolved due to the
lack of historical in situ sample collection and comparable
analytical approaches over relevant spatial and temporal extents.

Given the global scope of cyanoHABs (Paerl et al., 2011),
relatively few studies of cyanoHABs exist to assess frequency,
extent, and duration (Wells et al., 2015). Effective assessment
requires more comprehensive data sets than can typically be
obtained from field sampling programs. While advances have been
made using in situ sensor-based collection, these systems provide
poor resolution of spatial variability (Foster et al., 2017). The ideal
approach would remove these barriers to spatial and temporal
assessment and be flexible enough to have sufficient data density
to evaluate environmental condition across multiple scales. The
need for improved multi-scale assessment capability is desirable
so that comparisons and evaluation of condition can occur across
local, regional and national scales to more adequately evaluate a
nation’s water quality, biological integrity, and management
actions in a timely, standardized, and cost-effective manner.
Investigators have started using satellite data, such as those from
the European Space Agency's (ESA) MEdium Resolution Imaging
Spectrometer (MERIS) and Ocean and Land Colour Instrument
(OLCI) and NASA's Moderate Resolution Imaging Spectroradiom-
eter (MODIS), to evaluate trends in cyanoHABs in different water
bodies (Duan et al., 2009; Gómez et al., 2011; Kahru and Elmgren,
2014; Kahru et al., 2016; Matthews and Odermatt, 2015; Palmer
et al., 2015; Stumpf et al., 2012; Wynne and Stumpf, 2015).

Satellite data can be used to effectively quantify cyanoHABs,
and the highest abundances can be identified (Wynne et al., 2008)
on a routine basis for multiple water bodies across geo-political
boundaries. In this study, a previously validated algorithm (Lunetta
et al., 2015) was selected with the objective of developing a robust
temporal assessment method using MERIS. MEdium Resolution
Imaging Spectrometer data were used to quantify changes in
cyanoHAB surface area extent in lakes in Florida, Ohio, and
California. This study was restricted to four years as continuous full
resolution MERIS imagery was only available between 2008 and
2012. The 2008 to 2012 MERIS archive may be the best historical
record as a relative baseline for comparison against future events
to determine change over time given the potential future
availability of the operational Senintel-3 OLCI sensors starting in
2017. For the purpose of this study (or method demonstration),
cyanoHAB seasonality, duration, and frequency were not assessed.

2. Material and methods

2.1. Study sites

Florida and Ohio study areas were chosen for analysis as they
were included in previous satellite cyanobacteria algorithm
validation efforts (Lunetta et al., 2015). The state of California
was included to assess the extent of cyanoHABs on the western
area of the US (Fig. 1). Water bodies that were too narrow to be
viewed without overwhelming adjacency effects such as mixed
pixels (less than 300 m wide) were excluded. Estuaries and ocean
waters were also excluded due to the spectral reflectance of inland
lakes and reservoirs differing from the reflectance of coastal
estuaries.

The MERIS scene extent for Florida is located within the Coastal
Plain (CPL) ecoregion. North of Lake Okeechobee, the climate is
subtropical, with hot and humid, high precipitation summers and
mild, drier winters (US Climate Data, 2016). The bounding box for
Florida only included water bodies located near or within the St.
Johns River water management district (SJR), the Southwest
Florida water management district (SWF), and the South Florida
water management district (SF; Fig. 1D). Based on the findings
from the 2007 US Environmental Protection Agency National Lakes
Assessment (NLA), lakes in the entire CPL ecoregion have moderate
risk to cyanobacteria and cyanotoxins, with 35% microcystin
presence (US EPA, 2009).

California is made up of two ecoregions: the western mountains
(WMT) and the xeric (XER) west. California’s climate varies
substantially from mild, rainy winters, and dry warm summers in
the coastal and southern portions of the state, to the cold winters
and hot summers in the inland semi-arid parts of the state.
Northern California generally receives more precipitation than the
south, yet overall summer has low rainfall (US Climate Data, 2016).
Moderate El Niño-Southern Oscillation (ENSO) events in 2008 and
2009 brought higher than average temperatures and more
precipitation to southern California. In 2010, ENSO shifted to La
Niña bringing more precipitation to northern California, while
southern California remained cool and dry (Seager et al., 2015). The
study period preceded the extreme drought of 2012–2014 (Griffin
and Anchukaitis, 2014; Swain et al., 2014). Lakes in the WMT
ecoregion had lower cyanotoxin risk than other ecoregions (US
EPA, 2009). Based on in situ cyanobacteria cell counts, 96 percent of
lakes within WMT had low microcystin (US EPA, 2009).

The Ohio inland lakes and water bodies (Fig. 1B) used in this
study intersect several level III EPA ecoregions: the northern
Appalachians (NAP) in the northeast part of the state, the southern
Appalachians (SAP) in the south, and the temperate plains (TPL) in
the northwest. Ohio’s climate is temperate, with cold winters and
hot and humid summers. Precipitation is moderate year-round (US
Climate Data, 2016). Ninety-five percent of lakes in the NAP
ecoregion had low cyanobacteria and cyanotoxins. Microcystin was
present in 9% of NAP surveyed lakes. Approximately a quarter (25%)
of lakes in the SAP ecoregion had moderate risk levels to
cyanobacteria and cyanotoxins exposure, with 25% microcystin
presence (US EPA, 2009). Lake Erie was excluded from this study
because other programs, such as the NOAA Lake Erie HAB Forecast
System, already focused on the Great Lakes (Stumpf et al., 2012;
Wynne and Stumpf, 2015).

2.2. Satellite data and processing

The MERIS sensor was selected because of its public availability,
spectral range to support deriving cyanobacteria concentrations,
2–4 day return period, and similarities to OLCI (launched February
2016), which can be used for contemporary and future assess-
ments. A total of 5535 full resolution (300 m [m] at nadir) MERIS
scenes were obtained for the study areas in three states for 2008 to
2012. Data were processed using the National Oceanic and
Atmospheric Administration’s (NOAA) satellite automated proc-
essing system (SAPS), which incorporates the National Aeronautics
and Space Administration (NASA) standard satellite processing
software l2gen (packaged within Sea-viewing Wide Field-of-view
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Sensor (SeaWiFS) Data Analysis System [SeaDAS] 7.1) and the
Shuttle Radar Topography Mission (SRTM) static land mask. Images
were separately projected to Universal Transverse Mercator (UTM)
using nearest neighbor interpolation. The core output product
from l2gen was spectral surface albedo corrected for Rayleigh
radiance, Rhos(l). Clouds were masked using an albedo threshold
algorithm that accounts for turbid water and excludes pixels with
bright reflectances so as not to incorrectly mask intense blooms.
Land adjacent pixels were detected when Rhos(885) exceeded
Rhos(709), Rhos(754), and 0.01 over pixels identified as water, hereon
referred to as resolvable water. This ensured the signals originating
from land vegetation were excluded from water pixels. After the
masks were applied, the Cyanobacteria Index (CI) was calculated
using a spectral shape (SS) algorithm where the second derivative
around 665, 681, and 709 nm relates to chlorophyll absorption at
681 as detailed in Wynne et al. (2008). At 681 nm, eukaryotes
fluoresce strongly, leading to increased apparent reflectance that
obscures the chlorophyll absorption. As cyanobacteria fluoresce
poorly (Seppälä et al., 2007), the CI captures the chlorophyll
absorption at 681 nm, thereby detecting phytoplankton and
excluding many eukaryotes (Stumpf et al., 2016; Wynne et al.,
2008). For additional discrimination, a similar approach using 620,
665, and 681 nm was used to identify the presence of phycocyanin
(Lunetta et al., 2015; Matthews and Odermatt, 2015), with a
positive value indicating moderate to high phycocyanin, a common
indicator pigment for cyanobacteria. Remote sensing of phycocya-
nin is less sensitive than chlorophyll-a for estimating cyanobac-
teria blooms (Stumpf et al., 2016), so the inclusion of the SS(665)
criteria may not identify some WHO low-risk cyanobacterial
blooms. The MERIS CI output for each image was then converted to
cyanobacteria abundance (cells/mL) following Wynne et al. (2010),
where cyanoHAB abundance = 1.0 � 108*CI

Monthly maximum temporal composites were computed
instead of mean composites to minimize the effect of clouds or
wind that might otherwise reduce detection of the bloom. Monthly
maximums of cyanoHAB surface area coverage may provide
conservative overestimation, however sensitivity analysis of cloud
cover percentage (results not shown) revealed that weekly and
ten-day composites still had gaps in detection. Many cyanoHAB
species such as Microcystis, Aphanizomenon, and Dolichospermum,
have buoyancy control and will typically float to the surface in the
day during calm wind (Visser et al., 2015). Strong winds can mix
the blooms into the water column, diluting the surface concentra-
tion seen by the satellite (Wynne et al., 2010). Over one month, the
cells would be near the surface on one or more days (Stumpf et al.,
2012; Wynne and Stumpf, 2015). For cyanobacteria that have
limited buoyancy control, this method will quantify the monthly
maximum surface concentration.

Extensive field validation of the CI algorithm was previously
demonstrated in Florida, Ohio, and the New England states
(Lunetta et al., 2015; Tomlinson et al., 2016). Lunetta et al.
(2015), revised by Clark et al. (2017), report correspondence across
the spectrum of cyanoHAB abundance ranges spanning 10,000 to
>1 million cells/mL (mean absolute percentage error, MAPE =
28.6%, coefficient of determination, R2 = 0.95). Satellite derived
values below 109,000 cells/mL and above 1,000,000 cells/mL had
correspondence of above 80% with in situ samples collected within
7� days of a satellite match up. While the CI algorithm had lower
correspondence performance between 109,000–1,000,000 cells/
mL, this was expected due to the lack of validation data in this
concentration range and the large temporal range for coincident
satellite match-ups. The categorization of satellite derived CI
values based on WHO recreational guidance levels, as described
below, would further reduce the impact on algorithm error and
uncertainties.
2.3. Change estimation and evaluation

All statistical analyses were conducted using the R Statistical
Environment (R Core Team, 2015), version 3.2.0. Temporal
assessment of area coverage of water affected by a cyanoHAB
was computed for each of the three selected states. The area
coverage (km2) of cyanoHAB in each monthly composite was
calculated as the number of resolvable water pixels multiplied by
the native spatial resolution (300 m � 300 m) of the sensor. This
area was then normalized by the study area of resolvable water for
each state, resulting in the percent of detectable area per image.
Minimum reporting level (MRL) or detectable cyanoHAB was
defined as pixels which have cyanobacteria abundance >10,000
cells/mL (Lunetta et al., 2015). Following the WHO recreational
guidance levels thresholds (Chorus and Bartram, 1999) using only
cell abundance, area of detectable cyanobacteria bloom was
categorized into four categories: (1) low probability of acute
health effects (low-risk) with cells/mL < 19,999, (2) moderate
probability of acute health effects (moderate-risk) with 19,999 <

cells/mL < 99,999, and (3) high probability of acute health effects
(high-risk) with cells/mL > 99,999 (Chorus and Bartram, 1999;
Graham et al., 2010). Lastly, (4) the total surface bloom area and
surface area of non-detectable bloom water was calculated.

The Kendall tau test (Kendall, 1938) and the Theil-Sen estimator
for slope (Sen, 1968) were used to assess changes in the surface
area over time. Statistical tests for monotonic trend (simple linear
regression) in seasonal time series are often confounded by
nonnormal data, missing values, detection limits, and serial
dependence. The seasonal Kendall provides a nonparametric test
for trend computed as the median of the slopes determined by the
pair-wise comparison of all sample points within each season
(Hirsch and Slack, 1984). A modification of the Theil-Sen estimator
for slope (Hirsch and Slack, 1984) provides an unbiased estimator
of trend magnitude under conditions of seasonal cycles without
assumptions regarding normality, serial dependence, or homosce-
dasticity of residuals. A positive Kendall's tau value indicates that
the rank of the variable increased over time, whereas a negative tau
value denoted that as the rank of one variable increased, the other
variable decreased with a downward trend (Kendall, 1938).
Kendall’s tau is inherently smaller than Spearman’s rho, however
easily interpretable. If 2/3 of the data pairs had an increase with
time, tau = 0.5; for equal pairs where 1/2 increased and 1/2
decreased with time, tau = 0.

To assess the magnitude of the trend, the ratio of the variation in
the data around the trend line, often referred to as the residual
variability, over the slope (km2/yr) of the time series was
determined (hereafter referred to as Y) as an effect-size metric
analogous to Cohen’s d. This metric captures the time required for
the trend to exceed the variability. Residual standard error (RSE)
was used to account for residual variability. A 95% confidence
interval for the Theil-Sen slope across all seasons was also
reported. Effect sizes captured the slope against the variability and
assessed the magnitude of research findings, information that
cannot be obtained with frequentist statistics (Durlak, 2009;
Thompson, 2006; Volker, 2006).

2.4. Demonstration of assessment at different spatial scales

Extension of the current methods to smaller spatial domains
such as water management districts, watersheds, or to the county
level, may be useful to inform stakeholders at scales that interest
them. To illustrate the applicability of the methods to differing
spatial scales, analysis was applied to the three regions of
California: northern California (CA_N), central California (CA_C),
and southern California (CA_S; Fig. 1B). Further, the methods
outlined above were applied to three Water Management Districts



Table 1
Time series statistics for non-bloom area (ND), total bloom area (bloom), low-risk
bloom area (low), moderate-risk bloom area (mod), and high-risk bloom area (high)
in Florida (FL), Ohio (OH), and California (CA). Statistics include: 95% confidence
interval for slope, Theil-Sen slope, Kendall’s tau, and residual variability/slope (Y).

region WHO 95% CI slope (km2/yr) tau Y

FL ND �469.9:�54.3 �255.0 �0.33 3.3
bloom �23.9:487.0 215.3 0.28 4.1
low �26.8:5.0 �9.90 �0.18 7.8
mod �243.8:114.7 �27.7 �0.08 26.4
high 244.0:849.8 502.8 0.39 1.9

OH ND �14.7:7.6 �5.85 �0.17 7.94
bloom �13.5.9:12.9 �0.18 0.00 >100
low 0.0:0.3 0.00 0.25 Inf
mod 0.03:2.4 0.52 0.36 7.72
high �11.7:9.9 �1.65 �0.08 29.4

CA ND �19.3.8:256.7 122.1 0.22 2.9
bloom �319.7:208.4 �13.6 �0.06 43.9
low �0.3:6.1 2.1 0.22 6.5
mod �64.2:92.7 7.87 0.08 24.4
high �351.0:270.6 �16.7 �0.03 31.9
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in the state of Florida: south west Florida (SWF), St. Johns River
(SJR), and south Florida (SF; Fig. 1D). Florida’s Water Management
Districts administer a variety of programs including flood
protection, water management plans for water shortages,
managing the consumptive use of water and surface water, as
well as storm water management (Florida Department of
Environmental Protection, 2016).

3. Results

The total surface water area resolvable by MERIS for Florida
(650 waterbodies), California (381), and Ohio (257) is 13,794 km2,
21,289 km2, and 1876 km2 respectively. Clouds and the 2–4 day
temporal repeatability of MERIS inhibited the production of a
continuous time-series. During times of impeding cloud coverage,
reduced retrievals and thus reduced accuracy due to the fewer
number of scenes with cloud-free pixel data were expected. Fig. 2
illustrates the monthly mean cloud coverage represented as a
percent of resolvable water pixels for each study area in Florida,
Ohio, and California from 2008 to 2012. Mean monthly percent
cloud coverage was calculated using all MERIS scenes prior to
temporal binning. Seasonal trends in percent cloud coverage were
apparent for each region, with peaks during the winter months and
troughs during the summer in California and Ohio. In Florida,
seasonal cycles with steady fluctuations in cloud coverage were
observed throughout the year. Intra-annual cloud fluctuations,
particularly during the summer months, were not surprising as
central Florida is characterized by wet, cloudy summers due to its
semi-tropical climate.

The total bloom area increased by 215 km2/yr in Florida (slope
in Table 1) from 2008 to 2012. While the total bloom area peaks
changed little each year, the troughs increased from 4000 km2 in
2008 to 5600 km2 in 2011, a rate of 400 km2/yr (Fig. 3A). Ohio and
California had changes in total area, �0.18 km2/yr in Ohio, and
�13.6 km2/yr in California, from 2008 to 2012. Bloom area for
resolvable water in Florida, Ohio, and California represented as a
monthly percentage, illustrated the changes in cyanobacteria in
lakes greater than 0.9 km2 (Fig. 3B). Bloom area encompassed
approximately 45–95% of resolvable water area in Florida, 20–45%
in California, and 10–90% in Ohio.
Fig. 2. Percent monthly mean cloud coverage for FL, OH, and CA assessed by satellite and
(June–August).
Highlighting change that was large against the variability in the
data, in Florida, high-risk category blooms increased by a rate of
502.8 km2/yr, approximately 0.03% of total resolvable surface
water area in Florida (Table 1). The largest change in Florida
occurred in the area of high-risk probability of acute health effects
(Fig. 4A). The high-risk bloom (those with cyanobacterial cells/
mL > 99,999) troughs nearly doubled from 2008 (�2000 km2) to
2012 (�4000 km2). Ohio had negligible surface area change in
high-risk areas (Fig. 4B). California may have seen a slight decrease
in high-risk area (Fig. 4C, �16.7 km2/yr) from 2008 to 2012, but this
trend was small relative to the high variability in the dataset
(Table 1, Y = 32 years).

Central California exhibited an increase (31.12 km2/yr) in total
bloom area that was moderate against the data variability
(Y = 5.4 years; Table 2). The change in CA_C was likely attributed
to the change in area of high-risk blooms (19.6 km2/yr), however
this trend was small relative to the variability in the high-risk time
series (Y = 7.9 years). Additionally, moderate-risk blooms (ranging
from 20,000–99,999 cells/mL) may have increased (11.4 km2/yr) as
the change was moderate relative to the variability in the data
(Y = 4.8 years). Low-risk blooms (less than 20,000 cells/mL) in CA_N
 extrapolated from daily MERIS imagery. Shaded regions represent summer months



Fig. 3. Monthly temporal assessment of (A) total bloom area (km2) for FL, OH, and CA, and (B) percent bloom area for resolvable water area in FL, OH, and CA, including linear
regression lines.

Fig. 4. Times series of bloom area by WHO guidance levels for recreational waters for FL (A), OH (B), and CA (C). TS of low-risk, moderate-risk, and high-risk are indicated by
figure legends, including linear regression lines.
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Table 2
Time series statistics for Northern California (CA_N), Central California (CA_C), and
Southern California (CA_S). Statistics include: 95% confidence interval for slope,
Theil-Sen slope, Kendall’s tau, and residual variability/slope (Y).

region WHO 95% CI slope (km2/yr) tau Y

CA_N ND �21.1:170.1 51.55 0.22 4.7
bloom �276.9:184.8 1.14 0.00 >100
low 0.30:4.3 2.05 0.33 5.2
mod �75.7:64.0 11.4 0.03 14.0
high �256.3:216.8 �3.8 �0.03 >100

CA_C ND �4.3:105.1 37.45 0.27 4.6
bloom �9.4:88.5 31.12 0.22 5.4
low �1.9:2.4 0.22 0.07 25.6
mod �2.5:31.2 11.40 0.22 4.8
high �44.2:78.7 19.60 0.11 7.9

CA_S ND �20.7:26.1 3.63 0.08 20.6
bloom �13.6:27.7 1.2 0.03 67.8
low �0.6:0.6 0.13 0.07 28.2
mod �7.3:13.6 2.35 0.07 10.3
high �19.5:21.8 �1.7 0.00 45.2

Table 3
Time series statistics for the South Florida Water Management District (SF), the St.
Johns River Water Management District (SJR), and the South West Florida Water
Management District (SWF). Statistics include: 95% confidence interval for slope,
Theil-Sen slope, Kendall’s tau, and residual variability/slope (Y).

region WHO 95% CI slope (km2/yr) tau Y

SF ND �335.4:44.5 �163.50 �0.25 4.2
bloom �51.8:298.6 157.42 0.19 4.5
low �23.8:19.5 �3.90 �0.08 16.0
mod �157.1:206.6 14.92 0.03 40.1
high �125.9:534.0 300.00 0.22 2.7

SJR ND �178.9:�47.4 �111.45 �0.39 1.9
bloom 47.6:178.5 112.2 0.39 2.0
low �6.9:�0.6 �3.85 �0.38 2.9
mod �135.6:�27.4 �63.2 �0.44 3.2
high 111.0:281:9 179.5 0.61 1.4

SWF ND �6.3:8.7 �0.60 �0.06 37.4
bloom �7.5:17.4 1.45 0.03 24.7
low �0.3:0.0 �0.10 �0.21 6.7
mod �3.3:4.8 0.45 0.06 27.7
high �6.1:11.1 1.43 0.06 20.5
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may have increased slightly (2.05 km2/yr), but this change was
minimal relative to the total resolvable surface water area of
15,730 km2 in northern California. Further, the decrease observed
in CA_N high-risk blooms may have been reason for the slight
decrease observed in the state as a whole (Table 2). As northern
California encompasses nearly 50% of the satellite resolvable
freshwater in the state, changes in the region can impact estimates
statewide.

For a smaller spatial applicability, analysis was performed on
three water management districts within the state of Florida
(Fig. 5). Table 3 presents the maximum monthly results for each
water management district derived from the 2008 to 2012 MERIS
data. There were bloom area increases in all three water
management districts with the largest increases occurring
primarily within SJR (Fig. 5C) and SF (Fig. 5D). Total surface bloom
area coverage in SJR increased by 112.2 km2/yr, a strong trend
relative to the total variability in the dataset (Y = 2 years), and total
resolvable surface water area (2787.6 km2). While the surface
bloom area of low-risk and moderate-risk blooms categories has
declined in SJR, the high-risk blooms have increased substantially
by a rate of 179.5 km2/yr from 2008 to 2012. Similarly, high-risk
blooms in SF, home to Lake Okeechobee (51% of total resolvable
water in Florida), have increased by a rate of 300 km2/yr relative to
the 5522.5 km2 of total resolvable surface water.
Fig. 5. Temporal assessment of Florida water management districts by surface area of blo
), including linear regression lines.
4. Discussion

In 2014, Congress reauthorized the Harmful Algal Bloom and
Hypoxia Research Control Act (HABHRCA 2014; P.L. 113-124) that
focused on issues related to HABs and hypoxia. An interagency
HABHRCA report in 2016 identified monitoring challenges, which
included sustaining monitoring programs and maintaining con-
sistency of methods across monitoring programs. A specific
HABHRCA report recommendation included the ability to
strengthen long-term HAB monitoring. The status and assessment
approach described in this paper can assist in addressing both the
monitoring challenge and recommendation. This work provides an
opportunity for each US state to have a uniform satellite dataset
(Schaeffer et al., 2015) and a consistent approach for determining
the spatial extent and rate of change, year-to-year, with long-term
operational satellites. This work advances beyond statements that
HABs are generally increasing, and now provide stakeholders and
managers quantifiable cyanoHAB rates of change and spatial
extent.

Historically, the question of whether or not freshwater
cyanoHABs are increasing in frequency, extent, and duration has
been addressed by temporal assessments that focus on single
water bodies (Cao et al., 2016; Chen et al., 2003; Kahru and
Elmgren, 2014; Srifa et al., 2016; Stumpf et al., 2012; Verschuren
et al., 2002). Furthermore, focused studies can be limited by their
om for each WMD (A), and bloom area by risk category for SF (B), SJR (C), and SWF (D
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geographic extent leading to the inability to relate cyanoHAB
trends to changes in climate, environment, land use, extreme
weather events, and the feedbacks of these variables. While
satellite data have been limited by temporal resolution and
technology, satellite remote sensing remains a powerful tool for
providing data where field and in situ efforts lack temporal or
spatial coverage.

The primary objective of this effort is development of a robust
method for examining temporal changes in cyanoHAB spatial
extent. To illustrate applicability of the presented assessment
methods at varying spatial scales, analysis was performed in three
watershed management districts in Florida. High-risk blooms, as
defined by WHO, increased Florida by a rate of 502.8 km2/year,
which was likely attributed to the changes within the SJR and SF
watershed management districts. Total surface bloom area
coverage in SJR increased from 2008 to 2012, attributed primarily
to the very large increase in WHO high-risk category. As noted
above, even though both WHO low-risk and moderate-risk bloom
area in Florida have decreased at minimal rates per year, the trends
have the potential to be environmentally meaningful over a ten-
year period. South Florida, home to the state’s largest freshwater
lake, Lake Okeechobee, also exhibited increases in WHO-defined
high-risk bloom area. Results were consistent with previous
findings (Burns, 2008; Chapman and Schelske, 1997) that the
occurrence of cyanobacterial blooms in selected Florida waters
have become more prominent over time, particularly in many of
Florida’s largest waterbodies including: Lake Okeechobee, the
lower St. Johns River, and the Harris Chain of Lakes in the SJR.

Changes in WHO moderate-risk category remain the most
difficult to interpret. If the area with the moderate-risk blooms
increased, for example, the question remains as to whether it came
at the loss of the total low-risk bloom area, indicating increased
concentrations and a more significant problem; or at the loss of a
total high-risk bloom area, which indicates an improvement in
conditions. Overall increase in low-risk area is, of course, more
favorable for managers and stakeholders. Furthermore, trends
within WHO guidance levels may be influenced by pixels having
values near the thresholds between categories (low, moderate, and
high).

While the ability to quantify changes in inland cyanobacteria
blooms using satellite data was demonstrated here, it is important
to note the operating boundaries of this study. Water bodies that
were too narrow to be viewed without land adjacency effects
(<300 m wide) were excluded from the assessment. It may be
possible that higher resolution sensors such as those on Landsat-8
and Sentinel-2 may provide assessments for smaller water bodies.
To address the question of whether individual waterbodies impact
overall changes relative to the size of the waterbody, we test the
effect by omitting Lake Okeechobee, the largest waterbody in
Florida, from the state trend analysis. Excluding Lake Okeechobee
from the Florida analysis shows no change in the direction of the
slope or the relative effect size (Y) of the trend (Supplementary
Table 1). Since the St. Johns River Water Management District was
identified to also have a large influence on the changes observed in
Florida, a small subset of lakes known to be highly impacted by
cyanoHABs (Harris Chain of Lakes and Lake Apopka) was removed
from the SJR analysis. Similarly, removing a few specific lakes from
the SJR analysis has no effect on the direction of the trend or the
effect size (Supplementary Table 2).

Another potential limitation is that wind stress can impact the
vertical distribution of a bloom throughout the water column.
Often, blooms get stranded at the surface losing their ability to
regulate buoyancy in the water column, which can lead to thick,
near-shore accumulations. Given the difficulty for satellites to see
subsurface and the ability to deconvolute mixed land-water pixels,
near-shore accumulations may be misrepresented by satellite
imagery causing underestimation of the bloom. Additionally, the
depth of light attenuation in the red bands used to detect blooms is
related to light intensity, water clarity, and color, approximately
equivalent to one secchi depth. In situations, where a bloom is
dispersed vertically, the whole lake cell density can be under-
estimated if the bloom is distributed deeper than approximately
one secchi depth (Chorus and Bartram, 1999; Stumpf and Werdell,
2010).

Finally, as targeted MERIS acquisitions with the full resolution
sensor are only available between 2002 and 2007, with continuous
full resolution acquisition mode available only from 2008 to 2012,
the present study was restricted to a four-year time period of 2008
through 2011. That being said, as identified by the calculated
residual variability (Y), in most cases, even a longer time series of
an arbitrary continuous length of time (for example, 10 full years of
MERIS data), may still not provide enough data to discern a trend
through the high variability of these datasets. The 2008 to 2012
MERIS archive may be the best historical record as a relative
baseline for comparison against future events to determine change
over time given the potential future availability of the operational
Senintel-3 OLCI sensors starting in 2017. The gap of available
assessment data between 2012 and 2017 emphasizes the need for
continuity of missions similar to that of the Landsat missions
(Schaeffer et al., 2013). The assessment method developed in this
study will be relevant into the future as it is transferable to OLCI on
Sentinel-3A launched February 2016 and Sentinel–3B scheduled
for launch in 2017. These missions will extend the temporal
assessment for use in future forecast applications.

This work builds upon the findings from numerous case studies
on inland waters by using satellite data to extend trend
identification for cyanobacteria blooms to a state scale and across
numerous water bodies. Furthermore, by observing the WHO
guidance levels for the relative probability of acute health effects
during recreational exposure to cyanobacteria as examples, this
method will assist in prioritizing the degree of potential exposure
risk to cyanobacteria. Results show that overall, surface area extent
of cyanoHABs increased in Florida between 2008 and 2012.
California exhibited a very slight decrease, mainly attributed to
decreases in northern California between 2008 and 2012. Ohio
(excluding Lake Erie) exhibited little change in cyanoHABs in all
risk categories between 2008 and 2012.
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